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Scattering and Intrinsic Irreversibility 

R o b e r t o  L a u r a  1 

Received June 25, 1997 

The formalism of quantum systems with diagonal singularities is applied to 
describe scattering processes. Well-defined states are obtained for infinite time, 
which are related to a "weak form" of intrinsic irreversibility. Real and complex 
generalized spectral decompositions of the Liouville-von Neumann superoperator 
are computed. The physical meaning of "Gamow states" is discussed. 

1. I N T R O D U C T I O N  

The search for a physical explanation for the evolution toward equilib- 
rium of quantum systems has been of great interest in quantum statistical 
mechanics, and over the years a great number of papers have been devoted 
to this problem. 

The microscopic explanation of  the approach to equilibrium was related 
to the so-called intrinsic irreversibility of  quantum systems. Misra et  al. 

(1979a, b.) pointed out the existence of a time operator for the statistical 
description of classical and quantum systems. The mean value of this operator 
is the 'age '  of  the system, which is a growing function of  time. 

Bohm et  al. (1995; Bohm, 1995) related the intrinsic irreverisibility to 
the existence of generalized eigenvectors of the Hamiltonian with complex 
eigenvalues, corresponding to poles of  the analytic extension of the scatter- 
ing matrix. 

Complex eigenvalues have been obtained by Sudarshan et al. (1978)  by 
analytic continuation in a generalized quantum mechanics. 

The Friedrichs model, a prototype of a decaying system describing the 
interaction between a quantum oscillator and a scalar field, was extensively 
analyzed in the literature for the one excited mode sector. It is an exactly 
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solvable model, in which the quantum oscillator decays to the ground state 
for all initial conditions. Sudarshan et al. (1978) computed the complex 
spectral decomposition. The spectral decomposition was also obtained by 
Petrosky et al. (1991a) using subdynamic theory. The spectral decomposition 
with complex eigenvalues was interpreted in terms of rigged Hilbert spaces 
by Antoniou and Prigogine (1993) and by Antoniou and Tasaki (1993). 

When it is necessary to deal with systems with a huge number of 
particles, the standard procedure is to start with N particles in a box of volume 
V, taking the limit N --> oc, V ~ ~ with N/V = c < oc in the last step of 
the calculations. This method was used in subdynamic theory (Antoniou and 
Tasaki, 1993; Petrosky, and Prigogine, 199 lb), where the collision operator, 
with complex eigenvalues, is responsible for the evolution to statistical 
equilibrium. 

It is not surprising that the time evolution of the Friedrichs model can 
be successfully described using the methods of nonequilibrium statistical 
mechanics, which can be used, for example, to describe the approach to 
statistical equilibrium of a quantum gas. In both cases the interaction elimi- 
nates constants of motion. In the Friedrichs model the discrete eigenvalue 
disappears and in the gas the momentum of each particle is no longer a 
constant of motion when the interaction is present. 

In this paper we want to discuss "intrinsic irreversibility" in connection 
with pure scattering processes, where the total and the free Hamiltonians 
have the same continuous spectrum. For this purpose, it is important to use 
a formalism where "final" states (t ---> oo) are well defined. 

For finite systems with continuous spectrum, the usual formalism of 
quantum mechanics fails to give a description of the "final" states in terms 
of wave functions or density operators. To overcome this difficulty we will 
use in this paper the formalism developed by Antoniou et al. (1994, 1995, 
1997) for quantum systems with diagonal singularity. The quantum states of  
this theory are functionals over the space of observables (~. Mathematically 
this means that the space 90 of states is contained in {7 • . Physically, it means 
that the only thing we can really observe and measure are the mean values 
of the observables O ~ G in states p ~ b v C (~x: namely (O)p A = p[O] - 
(plO). This is the natural generalization of the usual trace Tr (150), which is 
ill defined in systems with continuous spectrum. For finite quantum systems 
with continuous spectrum, some observables (for example, the Hamiltonian) 
are represented by operators with diagonal singularities, and as they should 
have well-defined mean values, diagonal singularities also appear in the states. 

In Section 2, the resolvent formalism including creation, destruction, 
and collision superoperators is obtained in general for quantum systems with 
diagonal singularities. 
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In Section 3, we apply this formalism to the scattering problem, showing 
that the collision superoperator is zero, computing the singular "final" state, 
and discussing its relation with "weak intrinsic irreversibility." 

In Section 4, we compute the real and the complex spectral decomposi- 
tions of the time evolution with the help of the Lipmann-Schwinger vectors 
and its analytic extensions. Complex eigenvalues appear related to the 
assumed simple pole of the analytic extension of the density matrix. The 
physical meaning of "Gamow states" is also discussed in this section. 

2. RESOLVENT FORMALISM FOR GENERALIZED STATES 

Let us consider the Liouville-von Neumann equation for a state p, 

d 
i ~ p = Lp (1) 

The general solution, valid for t > 0, can be written as 

p, = ~ /  dz exp(-izt) ~ p,, (2) 

where F is a horizontal line parallel to the real axis and located in the upper 
half-plane. 

By defining two projectors P and Q acting on the states and satisfying. 

p2 = p, QZ = Q, P + Q = I  (3) 

([ is the identity superoperator acting on states), it is possible to decompose 
the resolvent as (Grecos et al., 1975; Zwanzig, 1964). 

1 1 1 
- -  - [P  + C(z) ]  [P  + O ( z ) ]  - Q (4)  
L -  z P L P  + ~ ( z )  - z Q L Q  - z 

The superoperators ~(z), C(z), and D(z)  of the previous expression are 
defined by 

1 
�9 (z) = Patt(z)P = - P L Q  Q L P  

Q L Q  - z 

1 
C(z) = O C ( z ) P  = Q L P  (5) 

Q L Q  - z 

1 
D(z)  = P D ( z ) Q  = - P L Q  

Q L Q  - z 

They are called collision, creation, and destruction operators. 
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As we wish to include generalized states in the formalism, it is useful 
to consider that the states are represented by antilinear functionals acting on 
the representation of the observables to give the mean value (Antoniou and 
Suchanecki, 1994, 1995; Antoniou etal., 1997). Therefore for any observable 
O ~ (~ and state p ~ (7 • we have 

(O>p = (plO), (apl + bp210) = a*(pllO) + b*(p, IO) (6) 

As is usual in quantum mechanics, the observables are represented by 
self-adjoint operators for which we expect real mean values: 

(plO) = (plO)* (7) 

The identity operator can be written as the sum over the projections on 
all the generalized pure states, i.e., I = Y,~,lct>(al. Therefore we should impose 

(pl/) = ~ (pl la>(ctl) = 1, (pl let>(etl) > 0 (8) 
Ot 

In the last expression (pllct><etl) is the probability of the state p to be the 
pure state Ict). For continuous spectrum the sum in (8) should be replaced 
by an integral and (pllet)<ctl) is a density of probability. Expression (8) is the 
generalization to states represented by functionals of the concept of trace. 

In this approach it is necessary to reconsider the Liouville-von Neumann 
equation (1), which can be applied to an arbitrary observable O, i.e., 

We should give a meaning to the second term of this equation. The superopera- 
tor L is defined by 

(LplO) = (plLtO) = (pl[H, O]) (9) 

where H is the Hamiltonian of  the quantum system. 
From (2) and the antilinearity of the state functionals we obtain 

ifr 1 (p,IO) = ~ dz exp(-izt)(pol L-7-~+ z IO) (10) 

The resolvent I/(L t + z) has the following decomposition 

I 1 
_ [pt + Dt(z)] P*L*P* + qt*(z) + [Pt + C*(z)] L * + z  z 

1 + Qt (11) 
Q*L*Q t + z 
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where pt and Qt are defined by 

(pIpto) = (P010), ( p l Q t O )  = ( Q p l O )  

and 

1 = QtLtpt xl2"t(z) = PtffZt(z)Pt -p tLtQt  QtLtQt + z 

Ct(z) = p*Ct(z)Q t = - p t L t Q t  
QtUQ* + z 

Dt(z) = QtDt(z)pt = 
QtLtQt + z 

QtLtpt 

(12) 

(13) 

3. INTRINSIC IRREVERSIBILITY AND SCATTERING 
PROCESSES 

Now we consider the scattering of a particle by a localized single 
scatterer. We assume for simplicity that the matrix elements V##, = (~1Vlfi') 
of the potential in the basis of eigenvectors of the momentum are well- 
behaved ordinary functions of ~ and ~'. 

The Hamiltonian of the system is 

f fl n = Ho + V = dp eplfi)<pl + dp dfi' Vpp, lfi)<p'l, ep 2m 

(14) 

Let us consider observables O e • of the form 

O = f d - ~ O a l ~ > < p l + f l d ~ d ~ ' O p # l ~ > < f i ' , ~  (15) 

where Of and O j  are two independent regular functions of the variables p 
and fi', satisfying 

O~ = O~,, O~'~,, = Op,~, 

Precisely the Hamiltonian (14) is of the form given by (15). z 
As we stated in the previous section, the states are represented by 

antilinear functionals acting on observables. In this case, a state p will be 

2This is a suitable choice for this problem in which we have a single particle. In this case 
observables like momentum or energy have a diagonal part as in equation (15) and should 
have well-defined mean values. It is not the case in the thermodynamic limit, where extensive 
observables have infinite mean values (Laura and Castagnino, n.d.). 
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represented by two regular functions Pa and Pap'. The mean value o f  an 
observable O is 

(plO)=fdipyOa+ffdp@'pyp.Opa, (16) 

From the conditions of  total probability and reality o f  the mean values 
given by equations (7) and (8) we obtain 

; P* = Pa ~ 0, PaP' = Pp'p', d~ p~' = I (17) 

It is useful to use a special notation for the generalized observables 
expanding ~3. Therefore we define 

l i )  - @<i ) ,  ) i i ' )  --  @ < i ' l  (18) 

We also define the functionals (ill and (i.~'l  satisfying 

(,5[k) = 8 3 ( p  --  k) 

( f ,5 ' lkk')  = 83@ - k )83( i  ' - k-') ( t9 )  

( i ~ ' )  = ( i i ' l k )  = 0 

These "bases"  can be used to expand states and observables 

p= f dip,*(,sl + f [ (20) 

With (19) and (20) we can deduce (16). 3 
Starting from the definitions 

L~O = [Ho, 01, L+vO = [V, O] 

and using the 'bases' Ifi), li,5') for the observables and (,51, (,5,5'1 for the 
states, we obtain 

L~ : ( @ d V  (~a - ~a.)ri,5')(~,5'l 

d~ dfi '  1fi,5')Vaa,[(`5'l - (,51] L~ 
. /  

J d,5 d,5',i,5')J dfi" [V~r Va,,a,(i,5"l ] (21) + 

3At this stage the formalism may look rather exotic. To make contact with more usual things. 
let us mention that a pure state represented by the normalized wave function Iq~) = f dk 
~:1/~) can also be represented by the fimctional p = f dp%*tp,,(pl + f f dp alp' ~p,,*%,.(pp- '1. 
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For the projectors Pt and Q* used in the previous section to decompose 
the resolvent, we choose in this section the following explicit form: 

f 
UO 

or equivalently 

( dfi 1~)(/51, pt 
J 

Qt = I dp d~' Ifi~')(pp' [ (22)  

The superoperators pt and Qt project the observables into their diagonal 
and off-diagonal parts. The corresponding superoperators P and Q project 
the states into their diagonal and off-diagonal parts,i.e., 

(Ppl = f d~ p~(fil, (QpI = I I dp dfi' (23) 

From (21) and (22) we obtain 

PtU = 0, ~t(z) = 0, Ct(z) = 0 (24) 

and the decomposition of the resolvent reduces to 

1 _ 1 pt + 1 QtOt(z)p t + Qt 1 Qt (25) 
L t + z z z QtLtQt + z 

The time evolution is given by 

i Ir exp(-izt) (Pp,I = ~ dz (Ppol 
z 

Iv 1 QtLtU (26) i_j__ dz exp(-izt) (Qpol QtUQ ~ 
2at z + z 

i fc 1 Qt (27) (Qptl = ~ dz exp(-izt)(Qpol QtUQ t + z 

Equation (26) shows the influence of the diagonal part (Ppol and the 
off-diagonal part (Qpol of the initial state on the diagonal part of the state at 
time t. As the collision operator q2"t(z) is zero, there are no diagonal-diagonal 
transitions in the process. 

Equation (27) shows that there is no influence of the diagonal part of 
the initial condition from the off-diagonal part of the state at time t. 

It is easy to show that the first factor in (26) is time independent. The 
integral over the horizontal line F in the upper half-plane can be closed over 
a very big semicircle in the lower half-plane. The integral over this big 
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semicircle has vanishing contribution when the radius goes to infinity. Then 
the closed curve can be deformed into a small circle around the sinple pole 
at z = 0, to obtain 

i (  dz exp(-izt) (POolO) = (PpolPtO) (28) 
2~r Jr z 

for all observables O. 
To analyze the second factor it is convenient to use the complete biorthog- 

onal system of Lipmann-Schwinger generalized eigenvectors of the 
Hamiltonian, 

1 
IE§ = rE> + viE> 

ek -+ iO - H 

1 
(k +1 = (kl + (EIV (29) 

~k -7- i0 - H 

for which 

f I ~ ---+" --§ 
t =  ~IE-+><E-+), H =  ak~ki~-><~-i, <E• • = 83(E - E') 

We have 

i fr exp(-izt) 1 QtLtPqO) 
2-rr dz z (Qpol Q,LtQ+ + z 

- i fr exp(-izt) f f  27r dz dk dk' z 

1 [Ik+)<E+I[H, P+o]IE' +)<E' +1]) 
(Qpol QtLtQ, + z 

i f r  exp(-izt) f f  2~r dz z dk dk' 

iEk - -  Ek, 

ek -- ek' 4- Z 
(QpoIIk+)(E ' +I)<E+IP+OIE ' +> (30) 

The integral over E and k' can be transformed using polar coordinates into 
an integral over ek, ~k' and over the angles. Looking at the integrals over the 
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energies, we can write 

fo~ ~ 
dz exp(- iz t )  de de' e - e' E) 

fo~ = - dz exp(-izt)  dR dv f(X, v) 
Z x Z - - P  

= - dk dz e x p ( -  izt) F~(z) 
z 

where for the last expressions we used the variables v -- e '  - e and X = 
�89 + e), and 

f: vf(~, Fx(Z) -~ dv .. v v) 
x Z 

In terms of  the complex variable z, (e-;ZTz)Fx(z) has a simple pole in 
z = 0 and a cut in the real interval ( - k ,  +h):  

0, if x ~ ( - k ,  + k )  
F~(x + iO) - F x ( x -  iO) = -27rixf(X,x), if x ~ ( - k ,  + k )  

As in the previous case, the integral over [" can be closed in the lower 
half-plane, surrounding the pole and the cut. Using a closed curve very close 
to the cut, we obtain 

fof  - dX dz exp(- iz t )  F~(z) 
Z 

{fo ;o o J; fo o } = 2~ri dX dvf(X,  v) + dk dv exp(- iv t )  f ( k ,  v) (31) 

We can now insert (31) in (30) to obtain 

fr 1 QtL,P, IO ) i dz exp(- iz t )  (Qpol QtLtQ, + z 
2"rr z 

= f  f dk dk' e x p { / ( , k -  r (Qpollk+)(-k+lPtOI-k ' +)(k' +1) 

Therefore 

(PptlO) = (PpolP*O) 

+ ( [ dk dk' exp{i(ek -- ,k,)t} (Qp,,tlk+>(k +lP'OIk'  +>(k' +l) (32) 
d ! 
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The Lipmann-Schwinger vectors (29) can also be used in expression 
(27), 

= ( ( dk dk' exp{i(ek - ek,)t}(Qpoll-k+)(-k+lQ'OIk' +)(k' +1) (Qo,.IO) 

(33) 

There are no singular terms in (Qpollk+)(k+lQtOIk"+)(k'+l), and therefore 
the Riemann-Lebesgue theorem can be used in (33) to obtain 

lim (Qp,lO) = 0 (34) 

From equations (32) and (33) it is easy to show that there is no time 
evolution for a diagonal initial condition, i.e., 

Po = PPo ~ Pt = Po 

We must isolate the singular term in (QPol[k+)(k+lPtOtk'')(k'+l) before 
using the Riemann-Lebesgue theorem to compute limt-..~(Pp)O). Using (29), 
we obtain 

(Qpol Ik +)(k + IPtOIk ' +)(k" + I) 

=(Qpollk~)(~:'+l) • {07,,~3(k - k")  + O~(kl 1 VlT() 
ek' + i0 -- H 

1 + (~iv i~')or 
r - i 0  - H 

1 1 + (~iv i~")o~(~"l vt~')} (35) 
~, - i 0 - H  ek, + i 0 -  H 

Replacing (35) in (32), and using the Riemann-Lebesgue theorem, 
we obtain 

lim (PotlO) = (PpolUO) + ( d-k (Qpollk +)([c+l)O~ 
l---~oo J 

= I d[" (pollk+)(k-+l)O~ (36) 

Therefore, in the weak sense 

(p:,l = lim (p,l = ( dk (p,,ll['+)(k+l)(kl (37) 
I.--~zo J 

This result shows a sort of"weak intrinsic irreversibility" of the scattering 
process. As we mentioned, a pure state which can be represented by a 
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normalizable wave function lip) = f dk r can also be represented by 
the functional 

p= f d-~ wymg~, + f f ap ap'wy~#(pp'l 

Therefore, in this formalism, p~" = p~'~, is a necessary condition to have a 
pure state. We are used to the idea that the 'purity'  of a state is preserved 
by the time evolution. However, equation (37) states that, in the weak sense 
and for all initial conditions, the evolution is not toward a pure state, but 
toward a 'generalized mixture' in which (p~)~' = (p,,l[k'§247 and (P~)~'k' = 
0. This 'final' state is time invariant, because from (24) we have 

(Lp~lO) = (LPp~!O)  = (p~IptL*O)  = 0 ~ Lp~ = 0 

Moreover, the time inversion Tp:~ of the 'final '  state is also invariant under 
time evolution. In fact, for any 

we have 

then 

and 

p~,,.(L~'I 

p_~,_,.(ff~'l 

Tp~ = f d~ (poll - ~:+)(-s 

LTpo~ = 0 

Therefore, the time evolution of the time inversion of the 'final '  state 
cannot reproduce the initial state. We may say, in this sense, that the scattering 
process is intrinsically irreversible. But this irreversibility appears for pro- 
cesses involving an infinite amount of time, as the 'final '  state is obtained 
with t -~ ~. For a very big time to < oo, the time inversion is possible in 
principle, although it may be very difficult to prepare the state Tp, ~ in practice. 

4. R E A L  AND C O M P L E X  S P E C T R A L  D E C O M P O S I T I O N S  

In the previous section we used the formalism of states and observables 
with diagonal singularities to obtain the time evolution of generalized states 
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[equations (32) and (33)]. A real spectral decomposition of the Liouville-von 
Neumann superoperator is implicit in these equations. 

This real spectral decomposition was enough to compute the 'final' state 
and to argue for the intrinsic irreversibility of the process. In this section we 
are going to make explicit through the spectral decomposition the influence 
of the resonances produced by the poles of the analytic extensions of the 
resolvent, which in the scattering process are determined by the poles of the 
'S matrix.' 

Although it is possible to compute the complex spectral decomposition 
for the model of the previous section, we prefer to analyze a simplified model. 

Let us consider a system with Hamiltonian 

; o ~  ~ 
H = H0 + V = do) colo)(o)l + do) do)' V~,lo))(o'l (38) 

where the generalized right (left) eigenvectors I o)) ((o)l) of H0 form a complete 
biorthonormal system 

I = do  Io~)(ml, ( o l o ' )  = 8(co - o)') 

We also assume that the Lipmann-Schwinger generalized eigenvectors 
of the Hamiltonian 

1 
I o : )  = Io)) + Vlo)) 

co + _ _ i o - H  

1 
(o)-+l = <col + (o)lV (39) 

o -T- iO - H 

are also a complete set: 

H = do  olo')(r I = do~ Io•162 (o~l~ '~)  = 8(~ - ~ ' )  

The vectors lo) § and Io)-) are related by the "S matrix" 

Io) +) = S(o))lo)-),  (o)+l = S*(o)))o)-I 

o ) +  i O - H  

where 

S ( o ) )  = 1 - 2" r r i (o ) lVko )  - 2'rri(o)rV 

(40) 

wo)) 

1 
S*(o)) = 1 + 2~ri(colVlo) + 2 " r r i ( o l V  VIo)) (41) 

o) - i 0  - H  
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We also assume that the analytic extension ( l/(s - H)).~=~ of the resolvent 
I/(z - H), from the upper (lower) to the lower (upper) half-plane, has a 
simple pole at z -- Zo(Z = z~'), where lm Zo < 0 (Ira z* > 0). 

From (41) we can define the following analytic extensions: 

+ 

\ ~  ' ' / s =  z 

The analytic extension S(z) [S*(z)] of S(to) [S*(to)] has a simple pole 
at z = z0 ( z  = z~').  

From the Lipmann-Schwinger generalized eigenvectors of the Hamilto- 
nian we may also construct the corresponding analytic extensions 

IzZ)= I z ) + ( s ~ )  + - _  VIz) 
$ 

(z-~[ = (zl + (zlV ~ (43) 

In the previous expressions, [z) and (zl are functionals defined by 

(zl,~) = ,~(z), (~ lz)  = ,r 

where q~(z) and ~o*(z) are the analytic extensions of q~(m) = (tokO) and 
~*( , , , )  = ( ~ I o ~ ) .  

As in Section 3, we consider observables of the form 

O = U O + Q t O = f d t o O . , I t o ) + f [ d t o d t o ' O ~ , l t o t o  ' ) .  (44) 

Io~) - fto)(tof, Itoo~') - Ito)(to'l, O,o = 0", Oo~o,, = O~,,,o 

If we define the functionals (tol and (too'l by the equations 

(tolto') = ~(to - to') 

(tolto'to") = (to'to"lto) = 0 



2328 Laura 

they can be used to represent the state functionals 

p~o~,,(to~o I 

= p~ ----- 0, P*~,' = P,o'o,, f dto p* = 1 p* 

The mean value of  an observable O in the state p is given by 

-- ; "  I f  * (O)p (plO) = dr p~,Oo, + dto dto' p~,Oo,~,' 

with the following time evolution: 

(p,lO) = (UrpolO) = (polU~,O) = (polexp(iHt)O exp(-iHt)) 

The observable given in (44) can be written as 

O = Odiag + Oreg 

= I d o  Oo, l~0)(tol Odiag 

Orog=ffd,,,d~o'Ojo,)(,,,'l 
Using the Lipmann-Schwinger  vectors (39), we have 

where 

Odiag = Oin v + mOdiag 

and a fluctuating (fluc) part, 

O = O~.v + Otauc 

Onuc = Oreg + AOdiag (45) 

f 
Oi.,, = J doJ O,,,ko+)(to+l 

= f doJ O,,,(IAo~)(A~I + IAeo)(~+l + I~+)(AoJI) AOdiag 

1 
i •  = i,.o) - r , . , ,  +)  = vi , , , )  

to + i O -  H 

Therefore the observable O can be decomposed into an invariant (inv) 
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The fluctuating part Otluc has no diagonal singularity [(Onuc),. = 0], and Oinv 
is time independent (Ut, Oi.v = Oi.v). 

The real spectral decomposition of the time evolution can be obtained 
using the decomposition O = O~.v + On~c of the observables and the L ipmann-  
Schwinger vectors (39): 

(p,LO) = (p01Oi~ + (pol exp[iHt]On.c exp[-iHt]) 

1o ~ = dto(pol Ito ~-)(to + I)O,o 

+ dto dto' ei("-"'~'(pollto+)(to+lOtlu~lto' +)(to' +1) (46) 

The last term will vanish when t --. :e and therefore, in the weak sense, 

fo~ (p~l = lim (p,I = dto (p0llto*)<to+l)(tol (47) 

Expression (46) corresponds to the following real spectral decomposition 
of the identity (I t) and Liouville-von Neumann (U) superoperators: 

I + = dto I~.,) (t~,l + dto dto' I~,,,o,,) (~,,~,1 
It  

U dto dto' (to ' - = - to )lO,~,.,)(d0~o,I (48) 

where 

i ~ , )  = iLto+)<to+l) 

(,i , ,~i = (tot 

Iqb~,) = IIto+)(to'+l) (49) 

(+~,,! = f dy {(to*ly)(ylto' ~) - g(to - y)g(y - to')l(yl 

+ffdydy'Ito~'ly)(y'lto'+)(yy'l  

It is easy to prove that the generalized right and left eigenvectors of  U 
given in (49) satisfy the orthogonality conditions 

( + o , l ~ , o . )  = 8 ( t o  - t o ' )  

(~3,,,l([)y.v,) = ((~,o,](I)y) = 0 

( ~ , 1 ~ . . , . , )  = ~( to - y ) a ( t o '  - y ' )  
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Any state can be expanded in terms of  the complete biorthonormal 
system (49) 

fo~ o p = d o  (plqbo,)(~,ol + do) do)' (plqb..o,)(6~o,w) 

and therefore it is important to give a physical meaning to the generalized 
states (45,~1 and ( ~ , , I .  For the mean value of  the total energy we obtain 

(~,~IH) = (tolH) = to 

(~,~,o,,IH) = f dy {<to~ly)<ylto' +) - 8(to - y)8(y  - to')}y 

ff + dy dy' <to+ly)Vyy,<y'lto' +) = 0 

and for the "trace" 

(*~,ll) = (toll) = (tol f dto'lto') = f dto' ~(to - to') = l 

(~,.,,11) = I dy {(to+ly)(ylto' ~) - 8(to - y)~(y - to')} 

= <to+lto' +) - ~(to - to') = 0 

The generalized state (~,,I is a physical state with energy to and "trace" 1, 
and (6,~,0,1 has zero energy and zero "trace." Clearly, it is impossible to 
realize a physical state including only ( ~ , l  components.  

The complex  number z~, where the analytic extension of  S*(to) has a 
simple pole, can be introduced in the spectral decomposit ion if in equation 
(46) we deform the to integral over R + into an integral over a curve in the 
lower half-plane, i.e., 

i~ dto ei"~tlto +>(to +l 

= do) ei~ 

fo ---> eiZ~tl fo)<fo I + dto ei'~ + i0)*)<(to + i0)+[ 

If0) = [2'rri(Res s*)=;]'/2tzU>, <for = [2"rri(Res S*):olZ/2<z~-I (50) 

The complex number z0, where the analytic extension of  S(to') has a 
simple pole, can be introduced in the spectral decomposit ion if, in equation 
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(46), we deform the to' integral over  R § into an integral over  a curve in the 
lower half-plane,  i.e., 

i~ dto ' e-i'~ ' +)(to' +1 

= dto' e-i" ' tS(to') l to ' -)( to '  +1 

f0 -r 
e-iZo'lfo)(fo[ + deo' e - ' " q ( t o '  - i0)+)((to ' i0)+1 

If0) = [-2"rri(Res S '  ~1/21 - \  )zoJ zo/, (f01 = [-2"rri(Res S)~o]l/2(Z~l (51) 

Replacing (50) and (5 L) in (46), we obtain 

(; (9,10) = dto (po[Ito+)(o-~+l)O~, 

+ e'C:;-:~ lfo)<Y0) 

fo + dto' e~(4-"~'~'(polifo)(folOn~l(to ' - iO)+)((to ' -- i0) '1)  

+ dto eS('~176 + i0)+)((to + iO)'~[Onucifo)(fo I) 

+ dto dto' e i(~-~')t 

• (poll(to + i0)+)((to + i0)+lOn~r ' - i0)+)((to ' - i0)+1) (52) 

The  changes indicated in equations (50) and (51) are possible if we 
impose  on the states and observables  the condition that p % ,  and O,,~o, have 
well-defined analytic extensions to the upper (lower) half-plane in the variable 
to(to ')? In this case it is possible  to prove that (On~r also has a well- 
defined analytic extension to the upper  (lower) half-plane in the variable 
o~(to'). Expression (52) corresponds to the fol lowing complex  spectral decom- 
position o f  the identity (I  t) and L iouv i l l e -von  Neumann  (U)  superoperators:  

~Equations (50) and (51) require the vanishing of the integrals over a very big semicircle in 
the upper (lower) halLplane in the variable to(to'). The presence of the exponential factor 
e'~(e '~ - ' ) ,  with t > 0, makes it easier to satisfy the requirement. 
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where  

I t = dto I~,o)(~r + I~oo)(~'ool + dto'  I~o,o')(~o~,1 

fo -= fo- fo  + dto Iq",.,o)(~.,ol + dto dto'  I~,,~,)(~.,,.,,I 

io L'* = (z~ zo)l~oo)(~ool + dto'  (z~' - ' - - to ) I q%,,,,)(~o,,, ,  I 

~0 -~176 
+ dto (to - Zo)l~r 

io-  io + dto dto'  (to ' - - to ) l q , ~ , ) ( q , , ~ , l  (53) 

Iq~)  = 

( ~ l  = 

Iq%o) = 

(~ |  -- 

I~o, , , , )  = 

( , h ~ , t  = 

I~,,.o) = 

( ~ , o o i  = 

I V,,,,,,,) = 

jl to+)(to§ 

(tol 

I tfo)(foO 

[2wi(Res  S*)~] - t / 2 [ - 2 ~ i ( R e s  S).=o] -1/2 

• (2"rriReso,=zo)(-2,rriRes~,.=zo)(qP~,~,,I 

I lfo)((to' - i0)+1) 

[ 2 v i ( R e s  S*) :o  ] -I/2(2"rriRes~,=:o)(dP.,., ,  I 

]i(to + i0)+)(jZol ) 

[ - 2 " n ' i ( R e s  S) j - l /2 ( -2"rc iRes ,~ ,=~o) (dPo ,~ , , I  

II(to + i 0 ) + } ( ( t o  ' - i 0 ) + t )  (54) 

(~ , , , . I  = (l(to + i0)+}((to ' - i0)+ll 

F rom these equat ions  it is easy  to p rove  that (~i"ool, (~'o,,,,I, (~,,,ol, and 
(~o,~,,I have no energy  o r  " t race ,"  i.e., 

( ~ o o l H )  = (~to,,,,]H) = (~,, ,olH) = (~o~,,,,IH) = 0 

( ' f ' oo t / )  = (qZo~,,tz) = (q, ,oort)  = (,f'~,~,,r/) = o 

and therefore  these genera l ized  states cannot  have  an independen t  physical  
meaning.  
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5. CONCLUSIONS 

For a quantum scattering problem, the continuous spectrum requires the 
existence of well-defined values of observables with diagonal singularities. 
The Hamiltonian of the system, in momentum representation, is an example 
of this class of observables. 

Defining the states as functionals acting on the operators representing 
the observables, more general states are allowed in the formalism. These new 
classes of states are not representable by wave functions or by trace class 
density operators. 

The main conclusion of this paper is that the functional approach can 
give a more complete description of the process. We proved that, even for 
initial conditions representable by wave functions, the "final" state (t = ~) 
is a well-defined diagonal functional (P2 = PP=), which is a mixture of 
generalized eigenvectors of the free Hamiltonian H0: 

= Iim 9, = ~ dk (O,,ll~+)(~+l)(~l (55) p= 
t-....~aa J 

This state cannot be represented by a wave function or by a trace class operator. 
The final state depends on the initial condition, although different initial 

conditions may converge into the same final state. 
The time inversion of a state is well defined in the formalism 

and a "weak intrinsic irreversibility" appears: as 

- ( dk(Poll - k+)<-k+l)*(kl Tp~ 
3 

and 

U, rp= = e-iL'Tp= = Zp= 

the time evolution of the time-inverted 'final' state cannot reproduce the 
initial state. But this irreversibility appears for processes involving an infinite 
amount of time, as the 'final' state is obtained with t ~ oo. For a very big 
time to < ~, the time inversion is possible in principle, although it may be 
very difficult to prepare the state Tp,  ~ in practice. 
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It is interesting to emphasize that it is not necessary to consider the 
analytic extensions o f  the "components"  of  the states to obtain these results. 
Only regularity o f  the functions representing the off-diagonal parts of  states 
and observables is required to expand the observables in terms of  the Lip- 
mann-Schwinger  eigenvectors, and to use the Riemann-Lebesgue  theorem 
for the deduction o f  (55). 

If, in addition, we assume that the "components"  of  states and observ- 
ables have well-defined analytic extensions, as is the case if Hardy class 
functions are involved, a complex spectral decomposit ion of  the time evolu- 
tion is possible. In Section 4, we constructed a complex spectral decomposit ion 
including "generalized Gamow states" related to the poles o f  the "S matrix." 
However,  we proved that these generalized states have zero energy and zero 
"trace." This is an expected result, consistent with energy and probability 
conservation, because the "Gamow states" expand the time-dependent part 
of  the physical states, which goes to zero for infinite time. Therefore, in this 
formalism, the " G a m o w  states" cannot exist as autonomous states, but only 
in a linear combination which should include the time-independent component  
(an eigenvector o f  the Liouvi l le-von Neumann superoperator with zero 
eigenvalue). 
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